

11	THIS DF	RAWING MAY BE US THE PURPOSE INTE	ED ONLY FOR ENDED			
12	Legend					
	Structur	e Failure Locatior	ı			
	Main and Ordinary Watercourse					
	Model Extent					
_	CDC Boundary					
	Sewer-	Surface and Com	bined			
	Flood Depth (m)				
T	< 0.1m					
	0.1m to	0.25m				
	0.25m te	o 0.5m				
	0.5m to	1.0m				
	1.0m to	1.5m				
	> 1.5m					
	West No	orfolk Fire and Re	scue - Callouts for			
1	Anglian	Water Flooding R	9 lecords			
1	EA Historic Su	rface Water Fl	ooding Records	S:		
Υ.T	Fluvial		Pluvial			
8	Ground Multipl	d Water 📙	Sewer			
/	Elooding Sur	NOV:				
/	Hooding Sur Multipl	vey. Ie 🔵 FI	uvial			
	Sewer	📃 Ti	dal			
/	Pluvial					
2						
eV.	King's Lynn					
25	Or	dinary W	atorcours	50		
1/1	F	lood Inv	estigation	1 1		
	© Crown Copyright, All rights reserved Norfolk County Council.					
illi.	Licence No. 0100 Covers all data th	Licence No. 0100031673 (2014).				
te	license for the Ki	ng's Lynn Ordin	ary Watercourse	Flood		
2	Scale at A3	Date	Drawn bv	Approved by		
0	1:27,000	July 2015	G. Athanasia	M. Mamun		
11						
R		DR	AFT			
			D a set la			
		Flood 1 in 30vr I	Depth Fluvial Flow			
		Flood 1 in 30yr, l	Depth Fluvial Flow			
1	Concultant	Flood 1 in 30yr, l	Depth Fluvial Flow			
1	Consultant	Flood 1 in 30yr, l	Depth Fluvial Flow			
		Flood 1 in 30yr, l	Capita Level 4			
	<u>Consultant</u>	Flood 1 in 30yr, I	Capita Capita Level 4 65 Grea EC2V 7	sham Street ′NQ		
	<u>Consultant</u>	Flood 1 in 30yr, I	Capita Capita Level 4 65 Grea EC2V 7	sham Street 'NQ		
	<u>Consultant</u>	Flood 1 in 30yr, I PITA FIGUI	Capita Level 4 65 Grea EC2V 7	sham Street 'NQ		

1	THIS	DRAWING MAY BE US THE PURPOSE INT	SED ONLY FOR ENDED			
12	Legend					
	Structu	ure Failure Location	n			
	Main and Ordinary Watercourse					
	Model Extent					
-	CDC Boundary					
	Sewer	- Surface and Corr	nbined			
	Flood Depth	(m)				
1	< 0.1m	ı				
	0.1m t	o 0.25m				
	0.25m	to 0.5m				
	0.5m t	o 1.0m				
	1.0m t	o 1.5m				
č.	> 1.5m	ı				
	West N	Norfolk Fire and Re	escue - Callouts for			
1	Anglia	ner Related Flooding F	ig Records			
1	EA Historic S	urface Water F	looding Records	5:		
řī	E Fluvia	al 🗌	Pluvial	-		
8	Grou	nd Water 📃	Sewer			
		JIE				
/	Flooding Su	irvey:	luncial			
		er 🔍 Fi	idal			
/	Pluvia	al				
3						
3						
3						
ey		Kinglo	Lunn			
ey la		King's	Lynn			
N.G.I. S. I.S. N	O	King's rdinary W	Lynn /atercours	se		
NIN IS VIR	O	King's rdinary W Flood Inv	Lynn /atercours ⁄estigatio	5e 1		
N NR NR	© Crown Copyr Licence No. 01	King's rdinary W Flood Inv	Lynn Atercours restigation	Se 1 unty Council.		
	© Crown Copyr Licence No. 010 Covers all data	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su inghe Juan Ordin	Lynn Atercours estigation served Norfolk Co	Se 1 unty Council. uted under		
「「「「「「「「「「「「「「」」」」	© Crown Copyr Licence No. 010 Covers all data license for the P Investigation pr	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su King's Lynn Ordin oject.	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse	SE 1 unty Council. uted under Flood		
	© Crown Copyr Licence No. 010 Covers all data license for the H Investigation pr Scale at A3	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su (ing's Lynn Ordin oject. Date	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by	Se 1 unty Council. uted under Flood Approved by		
	© Crown Copyr Licence No. 011 Covers all data license for the P Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su King's Lynn Ordin oject. Date July 2015	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia	Se 1 unty Council. uted under Flood Approved by M. Mamun		
	© Crown Copyr Licence No. 010 Covers all data license for the k Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su King's Lynn Ordin oject. Date July 2015	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia	SE 1 unty Council. uted under Flood Approved by M. Mamun		
	© Crown Copyr Licence No. 010 Covers all data license for the k Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su King's Lynn Ordin oject. Date July 2015	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia	SE 1 unty Council. uted under Flood Approved by M. Mamun		
	© Crown Copyr Licence No. 010 Covers all data license for the P Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su King's Lynn Ordin oject. Date July 2015 DF Flood 1 in 100yr,	Lynn Atercours estigation restigation erved Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia	Se 1 unty Council. uted under Flood Approved by M. Mamun		
	© Crown Copyr Licence No. 010 Covers all data license for the k Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su king's Lynn Ordin oject. Date July 2015 Flood 1 in 100yr,	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia AFT Depth Fluvial Flow	SE 1 unty Council. uted under Flood Approved by M. Mamun		
	© Crown Copyr Licence No. 010 Covers all data license for the H Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su (ing's Lynn Ordin oject. Date July 2015 DF Flood 1 in 100yr,	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia AFT Depth Fluvial Flow	SE 1 unty Council. uted under Flood Approved by M. Mamun		
	© Crown Copyr Licence No. 010 Covers all data license for the P Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su King's Lynn Ordin oject. Date July 2015 DF Flood 1 in 100yr,	Lynn Atercours estigation erved Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia AFT Depth Fluvial Flow	Se 1 unty Council. uted under Flood Approved by M. Mamun		
	© Crown Copyr Licence No. 010 Covers all data license for the P Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su (ing's Lynn Ordin oject. Date July 2015 DF Flood 1 in 100yr,	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia AFT Depth Fluvial Flow	Se 1 unty Council. uted under Flood Approved by M. Mamun		
	© Crown Copyr Licence No. 010 Covers all data license for the H Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su king's Lynn Ordin oject. Date July 2015 Date Flood 1 in 100yr,	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia AFT Depth Fluvial Flow	Se 1 unty Council. uted under Flood Approved by M. Mamun Sham Street 'NQ		
	© Crown Copyr Licence No. 010 Covers all data license for the P Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su King's Lynn Ordin oject. Date July 2015 DF Flood 1 in 100yr,	Lynn Atercours estigation restigation erved Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia AFT Depth Fluvial Flow Capita Level 4 65 Grea EC2V 7	Se 1 unty Council. uted under Flood Approved by M. Mamun Sham Street 'NQ		
	© Crown Copyr Licence No. 010 Covers all data license for the P Investigation pr Scale at A3 1:27,000	King's rdinary W Flood Inv ight. All rights res 00031673 (2014) that has been su king's Lynn Ordin oject. Date July 2015 Flood 1 in 100yr,	Lynn Atercours estigation served Norfolk Co pplied and distrib ary Watercourse Drawn by G. Athanasia AFT Depth Fluvial Flow Capita Level 4 65 Grea EC2V 7	SE 1 unty Council. uted under Flood Approved by M. Mamun		

Kings Lynn Ordinary Watercourses Study October 2015

Appendix E : Action Plan

Priority:** Short = up to 2 years; Medium - up to 5 years; Ongoing = regular monitoring. *Cost:** Low = £0 - £5000; Medium = £5001 - £10,000; High = £10,000+

SWMP	A	ction	Ronofit	Priority (Time)* Action Own		on Owner(s) Action Partner(s)	
Section	What?	How?	benent	Phoney (Time)	Action Owner(s)	Action Partner(S)	Cost
łt	Look for opportunities to reduce flood risk to critical transport infrastructure whilst upgrading the existing drainage network in partnership with Anglian Water, Highways Agency, IDB and Network Rail	Discussion with relevant officers of NCC & BCKLWN	Refine understanding of risk to critical infrastructure. Prioritise localised drainage improvements	Medium	NCC	Highways Agency and Anglian Water	Medium
Assessmer	Installation of additional road gullies or alternative drainage systems to reduce standing water depth and duration	As part of highways improvement programme include additional construction task of installing additional gullies or alternative drainage systems where feasible and required. Consultation with Anglian Water and IDB's may be required.	Reduction in the probability of flooding	Medium	NCC	Anglian Water and NCC Highways	Medium
Risk	Determine extent of I) residential use of at- risk basements [if any], ii) groundwater boreholes and iii) geological conditions, and decide if a risk from flooding exists.	No basements are identified in the EA NRD however this should be confirmed with local knowledge. If basements are identified then use predicted extent of 75year flood to enable determination.	Better understanding of scope of flooding impact, and improving identification of solutions and funding	Short	NCC and BCKLWN	Local Residents, NCC	Low
	Determine whether services (e.g. power, telecommunications) are resilient to surface water flooding	Discuss the overall resilience of services with relevant companies	Community resilience to flooding	Medium	NCC and BCKLWN	Utilities/services companies	Medium
	Developments across the catchment to include source control SuDS measure(s), resulting in a net improvement in water quantity or quality discharging to sewer	Development control review and monitoring of policy implementation	Mid-long term reduction in flood risk and improvement in water quality	Ongoing	BCKLWN	EA, NCC (FRM)	Low
a Wide Policy	All developments across the catchment (excluding minor house extensions less than 50m ²) which relate to a net increase in impermeable area are to include at least one 'at source' SuDS measure (e.g. water butt, rainwater harvesting tank, bioretention planter box etc). This is to assist in reducing the peak volume of runoff discharging from the site	Development control review and monitoring of policy implementation	Mid-long term reduction in the probability of flooding	Ongoing	BCKLWN	EA, NCC (FWMT)	Low
Flood Mitigation - Are	Proposed 'brownfield' redevelopments of more than one property or area greater than 0.1 hectare are required to reduce post- development runoff rates for events up to and including the 1 in 100 year return period event with an allowance for climate change (in line with NPPF and UKCIP guidance) to 50% of the existing site conditions. If this results in a discharge rate lower than the Greenfield conditions it is recommended that the Greenfield rates (calculated in accordance with IoH124) are used.	Development control review and monitoring of policy implementation	Mid-long term reduction in the probability of flooding	Ongoing	BCKLWN	EA, NCC (FWMT)	Low

Priority:** Short = up to 2 years; Medium - up to 5 years; Ongoing = regular monitoring. *Cost:** Low = £0 - £5000; Medium = £5001 - £10,000; High = £10,000+

SWMP	Action		Bonofit	Priority (Time)*	Action Owner(s)	Action Partner(s)	Cost**
Section	What?	How?	Denem	Phoney (Time)	Action Owner(S)	Action Farmer(5)	COSI
	Developments located in CDCs and for redevelopments of more than one property or area greater than 0.1 hectare require a betterment to Greenfield runoff rates (calculated in accordance with IoH124). It is recommended that a SuDS treatment train is utilised to assist in this reduction.	Development control review and monitoring of policy implementation	Mid-long term reduction in the probability of flooding	Ongoing	BCKLWN	EA, NCC (FRM)	Low
	Implement Policy relating to Best management practises in relation to Water Quality and a reduction in pollutant loads (investigate using the water quality computer software [MUSIC or similar])	Development control review and monitoring of policy implementation	Mid-long term reduction in the probability of flooding	Ongoing	BCKLWN	EA, NCC (FRM)	Low
	Review Policy Areas and implement recommended controls for development within these.	Development control review and monitoring of policy implementation	Mid-long term reduction in the probability of flooding	Ongoing	BCKLWN	EA, NCC (FRM), Anglian Water	Low
	Preferential overland flowpaths (Urban Blue Corridors): This concept aims to manage the conveyance of surface water across an area of the catchment through the long term redesign of the urban landscape to create specific pathways to convey surface water.	Development control review and monitoring of policy implementation	Mid-long term reduction in the probability of flooding	Ongoing	BCKLWN	EA, NCC (FRM), Anglian Water	Low
	Use Anglian WaterMP maps to require developers In areas at risk of flooding to demonstrate compliance with NPPF to ensure development will remain safe and will not increase risk to others, where necessary supported by more detailed integrated hydraulic modelling.	Development Control Policy	Mid-long term reduction in the consequences of flooding	Ongoing	NCC and BCKLWN (Planning Strategy Dpts)	EA, Anglian Water	Low
	Ensure drainage systems are operating at capacity - maintenance of gullies	Review existing gully clearance/ maintenance schedules and if necessary revise/prioritise based on surface water flooding predictions in this document	Flooding is not exacerbated	Ongoing	NCC (Highways) and BCKLWN	Anglian Water	High
ance	Gully Cleaning - Timing of Cleansing Rounds	Coordinate timing of gully cleansing rounds to ensure that they do not coincide with school opening and closing times and other peak times that would prevent gaining access to gullies.	Improved maintenance regimes	Short	NCC (Highways)	BCKLWN	Medium
Maintena	Clear Blocked Gullies	Focus attention on the maintenance of gully pots in the OAs which are considered to be high risk and on those areas identified as being at risk from blocked gullies	Reduction in the probability of flooding	Short	NCC (Highways)	BCKLWN	Medium
Mitigation -	Ensure drainage systems are operating at capacity - maintenance of Anglian Water sewers. Anglian Water to recommend SWMP findings to PPM programme, if flooding identified as drainage serviceability issue.	May require mapping of existing drainage infrastructure. Review existing maintenance schedules and if necessary revise/prioritise	Flooding is not exacerbated	Ongoing	Anglian Water	NCC (Highways), BCKLWN	High

Priority:** Short = up to 2 years; Medium - up to 5 years; Ongoing = regular monitoring. *Cost:** Low = £0 - £5000; Medium = £5001 - £10,000; High = £10,000+

SWMP	A	ction	Ponofit	Priority (Timo)*	Action Owner(c)	Action Partner(c)	Coot**
Section	What?	How?	Denent	Phoney (Time)	Action Owner(S)	Action Partner(S)	Cost
Flood	Maintain ditches and related infrastructure, proactively enforce maintenance of land drainage by riparian owners	Review existing maintenance schedules and if necessary revise/prioritise area of historic blockage (may require public consultation)	Flooding is not exacerbated	Ongoing	NCC, IBDs	Anglian Water, EA	High
	Review all natural assets to ensure the environmental integrity of the area(s) are not compromised by surface water runoff and any changes from development or flow regime	Undertake monitoring of areas(water quality, debris, flora/ fauna, etc)	Maintain environmental benefits	Ongoing	NCC (FRM) and BCKLWN	EA	Medium
tunity	Investigate (confirm) whether flooding incidents have occurred in CDCs and other areas identified as being at risk of flooding	Review flooding reports, then conduct survey of local residents (e.g. mail drop, door knocking) to update database	Validate model outputs, resident 'buy in'	Short	BCKLWN	NCC, Local Residents	Medium
Dppor	Monitor flood risk related problems and manage future development to minimise impact on flood risk	Development control policy and monitoring of flood risk incident register	Proactive management of potential flood risk in areas of higher risk probability	Ongoing	BCKLWN	NCC (Highways & FRM)	Low
Mitigation - (Areas	Undertake further investigations to implement Small Scale SuDS (e.g., Green roofs, rain gardens, permeable paving, soakaways) and Property Level Protection (PLP) where predicted flood risk is confirmed through consultation or future significant rainfall events	Undertake detailed modelling, cost benefit analysis and submit funding applications for flood mitigation schemes	Reduction in the probability of flooding	Ongoing	NCC / BCKLWN	EA / IDB	High
Flood	Undertake further investigations as required where predicted flood risk is confirmed through consultation or future significant rainfall events	Undertake detailed modelling, cost benefit analysis and submit funding applications for flood mitigation schemes	Reduction in the probability of flooding	Ongoing	NCC / BCKLWN	EA / Anglian Water	High

Priority:** Short = up to 2 years; Medium - up to 5 years; Ongoing = regular monitoring. *Cost:** Low = £0 - £5000; Medium = £5001 - £10,000; High = £10,000+

SWMP	A	ction	Benefit Priority (Ti		Action Owner(c)	Action Partner(s)	Cost**
Section	What?	How?	Benefit	Phoney (Time)	Action Owner(S)	Action Partner(S)	COSI
ergency eness	Review the emergency planning procedures in areas at risk from surface water flooding	Review depth and hazard model outputs with emegency planning teams	Ensure the safety of people and highlight where additional planning is required	Short	NCC (FRM) and BCKLWN	Category 1 and 2 Responders	Low
tion - Eme Ind Aware	Raise community awareness of simple measures and systems that can be installed at their homes to manage local flooding	Produce information packs and distribute to the community highlighting the low cost and high benefits of rainwater harvesting and water- butts	Improved community awareness of flood risk and 'buy in' to being part of the solution	Medium	NCC (FRM) and BCKLWN	Category 1 and 2 Responders	Medium
od Mitigat Ianning a	Communicate the risk of flooding and raise awareness within local communities	Prepare and communicate a summary of SWMP outcomes for use by the community	Improved community awareness of flood risk and 'buy in' to being part of the solution	Medium	NCC (FRM) and BCKLWN	Category 1 and 2 Responders	Medium
Floc P	Engage Highways Agency to monitor any future flooding and assess the associated risk on all Major Roads	Maintain regular contact with relevant parties to share flood risk information	Understanding of local flood risk and potential impacts	Ongoing	NCC (Highways)	NCC (FRM) and BCKLWN	High
iew nd late	Monitor Action Plan and delivery of actions by responsible parties	Review Action Plan	Ongoing awareness of actions and responsibilities to deliver them	Ongoing	NCC (FRM)	EA, Anglian Water and BCKLWN	Low
Rev ar Upc	Update Action Plan following one or more of the trigger events occuring	Review SWMP outputs against new information and revise Action Plan to suit	Action Plan is up to date and based on best available information	Medium	NCC (FRM)	EA, Anglian Water and BCKLWN	Low

Kings Lynn Ordinary Watercourses Study October 2015

Appendix F : Flood Estimation Proforma

Introduction

This document is a supporting document to the Environment Agency's flood estimation guidelines. It provides a record of the calculations and decisions made during flood estimation. It will often be complemented by more general hydrological information given in a project report. The information given here should enable the work to be reproduced in the future. This version of the record is for studies where flood estimates are needed at multiple locations.

Contents

Page

1	METHOD STATEMENT3
2	LOCATIONS WHERE FLOOD ESTIMATES REQUIRED7
3	STATISTICAL METHOD9
4	REVITALISED FLOOD HYDROGRAPH (REFH) METHOD 12
5	FEH RAINFALL-RUNOFF METHOD 13
6	DISCUSSION AND SUMMARY OF RESULTS 15
7	ANNEX - SUPPORTING INFORMATION 17

Approval

	Signature	Name and qualifications	For Environment Agency staff: Competence level (see below)
Calculations prepared by:		Georgia Athanasia/Anna Velkov	
Calculations checked by:		Kerry Foster	
Calculations approved by:			

Environment Agency competence levels are covered in <u>Section 2.1</u> of the flood estimation guidelines:

• Level 1 – Hydrologist with minimum approved experience in flood estimation

• Level 2 - Senior Hydrologist

• Level 3 – Senior Hydrologist with extensive experience of flood estimation

ABBREVIATIONS

AM	Annual Maximum
AREA	Catchment area (km ²)
BFI	Base Flow Index
BFIHOST	Base Flow Index derived using the HOST soil classification
CFMP	Catchment Flood Management Plan
CPRE	Council for the Protection of Rural England
FARL	FEH index of flood attenuation due to reservoirs and lakes
FEH	Flood Estimation Handbook
FSR	Flood Studies Report
HOST	Hydrology of Soil Types
NRFA	National River Flow Archive
POT	Peaks Over a Threshold
QMED	Median Annual Flood (with return period 2 years)
ReFH	Revitalised Flood Hydrograph method
SAAR	Standard Average Annual Rainfall (mm)
SPR	Standard percentage runoff
SPRHOST	Standard percentage runoff derived using the HOST soil classification
Tp(0)	Time to peak of the instantaneous unit hydrograph
URBAN	Flood Studies Report index of fractional urban extent
URBEXT1990	FEH index of fractional urban extent
URBEXT2000	Revised index of urban extent, measured differently from URBEXT1990
WINFAP-FEH	Windows Frequency Analysis Package – used for FEH statistical method

1.1 Overview of requirements for flood estimates

ltem	Comments
 Give an overview which includes: Purpose of study Approx. no. of flood estimates required Peak flows or hydrographs? Range of return periods and locations Approx. time available 	The purpose of the King's Lynn Ordinary Watercourse Study is to undertake a more detailed assessment of flood risk from ordinary watercourses within King's Lynn and its interaction with surface water flooding. No hydrology report or ISIS inflow boundaries are available for the Pierrepoint Model and the previous study recommended to re-estimating flow boundaries using updated methods (since the FEH rainfall-runoff method has been superseded by the Revitalised FEH method) and data. Therefore, hydrological calculation will be done for the Pierrepoint and Middleton Stop Drains to derive inflows for the ISIS model. The inflows applied to the model will consist of a combination of point inflows applied to the watercourses and rainfall hyetographs applied to the entirety of the 2D model extent. The point inflows represent runoff from the upper parts of the catchment that are not explicitly modelled.

1.2

1.3 Overview of catchment

Item	Comments
Brief description of catchment, or reference to section in accompanying report	Refer to King's Lynn Ordinary Watercourse Study: Technical Note

1.4

1.5 Source of flood peak data

Was the HiFlows UK dataset used? If so, which version? If not, why not? Record any changes made	No – not required
---	-------------------

1.6 Gauging stations (flow or level)

(at the sites of flood estimates or nearby at potential donor sites)

Water-	Station	Gauging	NRFA	Grid	Catch-	Туре	Start and
course	name	authority	number	reference	ment	(rated /	end of
		number	(used in		area	ultrasonic	flow
			FEH)		(km²)	/ level)	record
N/A							

1.7 Data available at each flow gauging station

Station name	Start and end of data in HiFlows- UK	Update for this study?	Suitable for QMED?	Suitable for pooling?	Data quality check needed?	Other comments on station and flow data quality – e.g. information from HiFlows-UK, trends in flood peaks, outliers.
N/A						
Give link/re data quality	ference to a checks carrie	ny further d out				

1.8 Rating equations

Station name	Type of rating e.g. theoretical, empirical; degree of extrapolation	Rating review needed?	Reasons – e.g. availability of recent flow gaugings, amount of scatter in the rating.
N/A			
Give link/reference to any rating reviews carried out			

1.9 Other data available and how it has been obtained

Type of data	Data relevant to this study?	Data available ?	Source of data and licence reference if from EA	Date obtained	Details
Check flow gaugings (if planned to review ratings)					
Historic flood data – give link to historic review if carried out.					
Flow data for events					
Rainfall data for events					
Potential evaporation data					
Results from previous studies					
Other data or information (e.g. groundwater, tides)					

1.10 Initial choice of approach

Is FEH appropriate? (it may not be for very	
small, heavily urbanised or complex	
catchments) If not, describe other methods to	

be used.	
 Outline the conceptual model, addressing questions such as: Where are the main sites of interest? What is likely to cause flooding at those locations? (peak flows, flood volumes, combinations of peaks, groundwater, snowmelt, tides) Might those locations flood from runoff generated on part of the catchment only, e.g. downstream of a reservoir? Is there a need to consider temporary debris dams that could collapse? 	
 Any unusual catchment features to take into account? e.g. highly permeable – avoid ReFH if BFIHOST>0.65, consider permeable catchment adjustment for statistical method if SPRHOST<20% highly urbanised – avoid standard ReFH if URBEXT1990>0.125; consider FEH Statistical or other alternatives; consider method that can account for differing sewer and topographic catchments pumped watercourse – consider lowland catchment version of rainfall-runoff method major reservoir influence (FARL<0.90) – consider flood routing extensive floodplain storage – consider choice of method carefully 	
Initial <u>choice of method(s)</u> and reasons Will the catchment be split into subcatchments? If so, how?	The Middleton Stop Drain and the Pierrepoint drain ordinary water courses are located in a close proximity to the River Gaywood. The catchments are permeable and covered by similar soil type (see the soil map extract below). No gauging stations (flow or level) exist on the ordinary water courses and the nearest gauge is the Sugar Fen Gauging Station located on River Gaywood and used as a donor station for the River Gaywood flood estimation (River Gaywood Flood Modelling, PBA, 2014). Therefore a decision was made to use the same approach and method used in the Gaywood river Flood Modelling report: 2014 200117 Model Report Revision A (draft), (P:\environment\ZWET\CS072082_KingsLynnOrdinary Watercourses\Data)

	La CALI AND CALIFICATION CALIFI
Software to be used (with version numbers) FE	EH CD-ROM v3.0 ¹ / ISIS v3.7

¹ FEH CD-ROM v3.0 © NERC (CEH). © Crown copyright. © AA. 2009. All rights reserved.

2 Locations where flood estimates required

The table below lists the locations of subject sites. The site codes listed below are used in all subsequent tables to save space.

Site code	Watercourse	Site	Easting	Northing	AREA on FEH CD- ROM (km ²)	Revised AREA if altered
MPS	Middleton Stop Drain	Upstream model extent.	566850	317800	13.77	
PP	Pierrepoint drain	Upstream model extent.	565650	317600	1.58	
Reasons for choosing above locations Flood estimation points located at model ext			del extent			

2.1 Summary of subject sites

2.2 Important catchment descriptors at each subject site (incorporating any changes made)

Site code	FARL	PROPWET	BFIHOST	DPLBAR (km)	DPSBAR (m/km)	SAAR (mm)	SPRHOST	URBEXT	FPEXT
MPS	0.983	0.23	0.74	3.53	14.2	635	24.79	0.0165	0.24
PP	1	0.23	0.735	1.31	11.6	620	22.66	0.1016	0.23

Record how catchment boundary was checked and describe any changes (refer to maps if needed)	The catchment boundaries were checked using LiDAR data and topographical survey and the FEH CD-ROM. For the Middleton Stop Drain the catchment boundaries from the different sources were matching. However the selection of the boundaries for the Pierrepoint drain catchment was a bit arbitrary. According to the FEH CD ROM the point where the drain starts in the TuFlow model is actually on a tributary to the Middleton Stop drain and the Pierrepoint drain starts a bit further to the west (the green point) with a very small catchment area contributing to the start of the drain. For the purpose of this assessment we have assumed that the FEH is out of date and that the Pierrepoint drain is artificially extended further east with a network of drains, as shown in the DRN. Therefore the inflow node location was selected as shown in the figure below (the red node) with delineated catchments area.
Record how other catchment descriptors (especially soils) were checked and describe any changes. Include before/after table if necessary.	Catchment descriptors for the flow nodes were sensibility checked against soils and geology maps and DTM data. No adjustments to the catchment descriptors were made.
Source of URBEXT	URBEXT1990 / URBEXT2000 - FEH CD-ROM
Method for updating of URBEXT	CPRE formula from FEH Volume 4 / CPRE formula from 2006 CEH report on URBEXT2000 – Technical Report FD1919/TR

3 Statistical method

3.1 Search for donor sites for QMED (if applicable)

 Comment on potential donor sites Mention: Number of potential donor sites available Distances from subject site Similarity in terms of AREA, BFIHOST, FARL and other catchment descriptors Quality of flood peak data Include a map if necessary. Note that donor catchments should usually be rural. 	As stated in Section 1.8 above there do not appear to be any suitable local donors that could have been used for this study. The catchments for the Middleton Stop Drain and Pierrepoint Drain are relatively small and situated immediately to the south of the River Gaywood catchment. Therefore, for consistency with the rivers in the north of the catchment, the same approach which was applied for River Gaywood flow nodes has been used for Middleton Stop Drain and Pierrepoint Drain.
---	---

3.2 Donor sites chosen and QMED adjustment factors

NRFA no.	Reasons for choosing or rejecting	Method (AM or POT)	Adjust- ment for climatic variation?	QMED from flow data (A)	QMED from catchment descriptors (B)	Adjust- ment ratio (A/B)
33077	Sugar Fen GS used in Gaywood River flow derivation. In this case the estimates are presented for comparison purpose only.			0.71	1.36	
Which v sites, an Note: Th QMED c	ersion of the urban adjustment was u d why? ne guidelines recommend great cautio on catchments that are also highly pern	WINFAP-F (2010) / oth	EH v3.0.003 / ner (delete as ap	Kjeldsen plicable)		

3.3 Overview of estimation of QMED at each subject site

					Data tran	sfer			
			NRFA numbers for			Moderated QMED adjustment	lf m than do	nore I one nor	
Site code	Method	Initial estimate of QMED (m ³ /s)	donor sites used (see 3.3)	Distance between centroids d _{ij} (km)	Power term, a	(A/B) ^a Power erm, a		Weighted average adjustment factor	Final estimate of QMED (m³/s)
MSP	Statis tical	0.71							0.71
PP	Statis tical	0.11							0.11
Are the values of QMED consistent, for example at successive points along the watercourse and at confluences?									
Which v and why	ersion o ?	f the urban	adjustmen	t was used for	QMED,				

			NRFA numbers for		Moderated QMED adjustment	If more than one donor			
Site code	Method	Initial estimate of QMED (m³/s)	donor sites used (see 3.3)	Distance between centroids d _{ij} (km)	Power term, a	(A/B) ^a	Weight	Weighted average adjustment factor	Final estimate of QMED (m³/s)

Notes

Methods: AM – Annual maxima; POT – Peaks over threshold; DT – Data transfer; CD – Catchment descriptors alone. When QMED is estimated from POT data, it should also be adjusted for climatic variation. Details should be added. When QMED is estimated from catchment descriptors, the revised 2008 equation from Science Report

SC050050Error! Bookmark not defined. should be used. If the original FEH equation has been used, say so and give the reason why.

The guidelines recommend great caution in urban adjustment of QMED on catchments that are also highly permeable (BFIHOST>0.8). The adjustment method used in WINFAP-FEH v3.0.003 is likely to overestimate adjustment factors for such catchments. In this case the only reliable flood estimates are likely to be derived from local flow data. The data transfer procedure is from Science Report SC050050. The QMED adjustment factor A/B for each donor site is given in Table 3.3. This is moderated using the power term, a, which is a function of the distance between the centroids of the subject catchment and the donor catchment. The final estimate of QMED is (A/B)^a times the initial estimate from catchment descriptors.

If more than one donor has been used, use multiple rows for the site and give the weights used in the averaging. Record the weighted average adjustment factor in the penultimate column.

3.4 Derivation of pooling groups

The composition of the pooling groups is given in the Annex. Several subject sites may use the same pooling group.

Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
	Site code from whose descriptors group was derived	Site code from whose descriptors group was derived (enhanced single site analysis)	Site code from whose descriptors group was derived Subject site treated as gauged? (enhanced single site analysis) Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.

Notes

Pooling groups were derived using the revised procedures from Science Report SC050050 (2008). Amend if not applicable. The weighted average L-moments, before urban adjustment, can be found at the bottom of the Pooling-group details window in WINFAP-FEH.

3.5 Derivation of flood growth curves at subject sites

Site code	Method (SS, P, ESS, J)	If P, ESS or J, name of pooling group (3.4)	Distribution used and reason for choice	Note any urban adjustment or permeable adjustment	Parameters of distribution (location, scale and shape) after adjustments	Growth factor for 100-year return period

Site code	Method (SS, P, ESS, J)	If P, ESS or J, name of pooling group (3.4)	Distribution used and reason for choice	Note any urban adjustment or permeable adjustment	Parameters of distribution (location, scale and shape) after adjustments	Growth factor for 100-year return period
Notes						

Methods: SS – Single site; P – Pooled; ESS – Enhanced single site; J – Joint analysis

A pooling group (or ESS analysis) derived at one gauge can be applied to estimate growth curves at a number of ungauged sites. Each site may have a different urban adjustment, and therefore different growth curve parameters. Urban adjustments to growth curves should use the version 3 option in WINFAP-FEH: Kjeldsen (2010). Growth curves were derived using the revised procedures from Science Report SC050050 (2008). Amend if not applicable.

Any relevant frequency plots from WINFAP-FEH, particularly showing any comparisons between single-site and pooled growth curves (including flood peak data on the plot), should be shown here or in a project report.

3.6 Flood estimates from the statistical method

Site	Flood peak (m ³ /s) for the following return periods (in years)								
code	2								

4.1 Parameters for ReFH model

Note: If parameters are estimated from catchment descriptors, they are easily reproducible so it is not essential to enter them in the table.

Site code	Method: OPT: Optimisation BR: Baseflow recession fitting CD: Catchment descriptors DT: Data transfer (give details)	Tp (hours) Time to peak	C _{max} (mm) Maximum storage capacity	BL (hours) Baseflow lag	BR Baseflow recharge
Brief de carried in a proj	scription of any flood event analy out (further details should be given ect report)				

4.2 Design events for ReFH method

Site code	Urban or rural	Season of design event (summer or winter)	Storm duration (hours)	Storm area for ARF (if not catchment area)
Are the st next stage hydraulic	orm durations like of the study, e. model?	ely to be changed in the g. by optimisation within a		

4.3 Flood estimates from the ReFH method

Site	Flood peak (m ³ /s) or volumes (m ³) for the following return periods (in years)							rs)	
code	2								

FEH rainfall-runoff method 5

5.1 Parameters for FEH rainfall-runoff model

Methods: FEA : Flood event analys

LAG : Catchment lag DT : Catchment descriptors with data transfer from donor catchment

- CD : Catchment descriptors alone BFI : SPR derived from baseflow index calculated from flow data

Site code	Rural (R) or urban (U)	Tp(0): method	Tp(0): value (hours)	SPR: method	SPR: value (%)	BF: method	BF: value (m³/s)	If DT, numbers of donor sites used (see Section 5.2) and reasons
Note:		The FEH ra The same as follows: -Baseflow s flow was e PBA, 2014 catchments -Quickflow -Unit hydro falling limb	ainfall-runoff scaling facto set to the es estimated in) and scaled S. scaled by 0. ograph TB so similar to the	method was ors used in th timated base the Gaywoo to reflect th 4, caled by 1.5 e observed d	i used to g ne Gaywoo eflow for 10 d study (T e smaller o (derived i ata for Sug	enerate hydr od River flow) year event Table A7, Riv catchments s teratively in gar Fan)	ographs us estimation for each o ver Gaywo size of Mido the Gaywo	sing catchment descriptors. (2014, PBA) were applied f the catchments. The base od Flood Modelling report, dleton Stop and Pierrepoint bod study, to give a longer

5.2 Donor sites for FEH rainfall-runoff parameters

N 0.	Watercourse	Station	Tp(0) from data (A)	Tp(0) from CDs (B)	Adjustment ratio for Tp(0) (A/B)	SPR from data (C)	SPR from CDs (D)	Adjust- ment ratio for SPR (C/D)
1								
2								

5.3 Inputs to and outputs from FEH rainfall-runoff model

Site	Storm	Storm area	Floo	od peaks	(m ³ /s) fo	or the fo	llowing r	eturn pe	riods (in y	/ears)
code	duration (hours)	for ARF (if not catchment area)	100yr							
MPS	3.5	СА	1.33							
	16		1.78							
	22.5		1.82							
	26		1.81							
PP	3.5	СА	0.37							
	16		0.40							
	22.5		0.37							
	26		0.36							

Site	Storm	Storm area	Floc	od peaks	(m ³ /s) for the following return periods (in years)					
code	duration (hours)	for ARF (if not catchment area)	100yr							
Are the storm durations likely to be changed in the next stage of the study, e.g. by optimisation within a hydraulic model?										

6.1 Comparison of results from different methods

This table compares peak flows from various methods with those from the FEH Statistical method at example sites for two key return periods. Blank cells indicate that results for a particular site were not calculated using that method.

	Ratio of peak flow to FEH Statistical peak									
Site	Ret	turn period 2 ye	ars	Return period 100 years						
code	ReFH	Other method	Other method	ReFH	Other method	Other method				

6.2 Final choice of method

Choice of method and reasons – include reference to type of study, nature of catchment	The FEH method has been chosen to provide the best estimate of peak flows and the generate hydrographs. This was the method applied for the flow estimation of River Gaywood and based on the close location and similarity of the catchments, and for consistency, the same method was applied for the flows generation of the Middleton Stop and Pierpont Drains.
and type of data available.	Tp and SPR remained unchanged from catchment descriptor values. BF has been altered based on the analysis carried out in the previous (River Gaywood) study. The calculations for the scaling factors are in the "Critical_Duration_FEH_ReFH.xls" (P:\environment\ZWET\CS072082_KingsLynnOrdinaryWatercourses\Hydrology).
	It is worth noting that the Gaywood River upstream catchment is permeable and the MSP and PD are less permeable with SPR values greater than 20%. A quick test as part of ths review identified that there is little difference in the final flows if a BF calculated by FEH catchment descriptors is used. Therefore is it reasonable to use the scaled BFs as these have been inferred from local data.

6.3 Assumptions, limitations and uncertainty

List the main <u>assumptions</u> made (specific to this study)	Usual FEH assumptions. The same factors for adjustment of the hydrograph shape as described in the Gaywood modelling report were applied. The adjustments are as follows: -Baseflow set to the estimated baseflow for 10 year event for each of the catchments. The base flow was estimated in the Gaywood study and we scaled it to reflect the smaller catchments size. -Quick flow scaled by 0.4,
	-Unit hydrograph TB scaled by 1.5 (derived iteratively in the Gaywood study, to give a longer falling limb similar to the observed data for Sugar Fan)
Discuss any particular <u>limitations</u> , e.g. applying methods outside the range of catchment types or return periods for which they were developed	No directly observed flow data or suitable donor station was available. Therefore the same approach and the scaling factors derived for the River Gaywood flow estimation were used.
Give what information you can on <u>uncertainty</u> in the results – e.g.	No data was available for flow calibration.

confidence limits for the QMED estimates using FEH 3 12.5 or the factorial standard error from Science Report SC050050 (2008).	
Comment on the suitability of the results for future studies, e.g. at nearby locations or for different purposes.	
Give any other comments on the study, for example suggestions for additional work.	

6.4 Checks

Are the results consistent, for example at confluences?	
What do the results imply regarding the return periods of floods during the period of record?	The 100yr return period flow appears reasonable for the respective catchments size.
What is the 100-year growth factor? Is this realistic? (The guidance suggests a typical range of 2.1 to 4.0)	
If 1000-year flows have been derived, what is the range of ratios for 1000-year flow over 100-year flow?	
What range of specific runoffs (I/s/ha) do the results equate to? Are there any inconsistencies?	
How do the results compare with those of other studies? Explain any differences and conclude which results should be preferred.	
Are the results compatible with the longer-term flood history?	
Describe any other checks on the results	

6.5 Final results

		Flood peak (m ³ /s) for the following return periods (in years)									
code	10	20	40	100	200						
MS	1.05	1.28	1.52	1.88	2.22						
PP	0.20	0.24	0.30	0.37	0.43						

If flood hydrographs are needed for the next stage of the study, where are they provided? (e.g. give filename of spreadsheet, name of ISIS model, or reference to table below)	P:\environment\ZWET\CS072082_KingsLynnOrdin aryWatercourses\Hydrology\IED_South Catchment\FEH\MS\Other hydrographs; P:\environment\ZWET\CS072082_KingsLynnOrdin aryWatercourses\Hydrology\IED_South Catchment\FEH\PP\Other return periods
--	--

7.1 Pooling group composition

7.2 Additional supporting information

Commercial in Confidence

Capita Property and Infrastructure Ltd